Nobel Prize in Physics 2023 goes to Pierre Agostini, Ferenc Krausz and Anne L'Huillier

The laureates’ contributions have enabled the investigation of processes that are so rapid they were previously impossible to follow

04-Oct-2023
Computer-generated image

Symbolic image

The Royal Swedish Academy of Sciences has decided to award the Nobel prize in Physics 2023 to Pierre Agostini (The Ohio State University, Columbus, USA), Ferenc Krausz (Max Planck Institute of Quantum Optics, Garching and Ludwig-Maximilians-Universität München, Germany) and Anne L’Huillier (Lund University, Sweden) “for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter”.

© Johan Jarnestad/The Royal Swedish Academy of Sciences

Experiments with light capture the shortest of moments

The three Nobel Laureates in Physics 2023 are being recognised for their experiments, which have given humanity new tools for exploring the world of electrons inside atoms and molecules. Pierre Agostini, Ferenc Krausz and Anne L’Huillier have demonstrated a way to create extremely short pulses of light that can be used to measure the rapid processes in which electrons move or change energy.

Fast-moving events flow into each other when perceived by humans, just like a film that consists of still images is perceived as continual movement. If we want to investigate really brief events, we need special technology. In the world of electrons, changes occur in a few tenths of an attosecond – an attosecond is so short that there are as many in one second as there have been seconds since the birth of the universe.

The laureates’ experiments have produced pulses of light so short that they are measured in attoseconds, thus demonstrating that these pulses can be used to provide images of processes inside atoms and molecules.

In 1987, Anne L’Huillier discovered that many different overtones of light arose when she transmitted infrared laser light through a noble gas. Each overtone is a light wave with a given number of cycles for each cycle in the laser light. They are caused by the laser light interacting with atoms in the gas; it gives some electrons extra energy that is then emitted as light. Anne L’Huillier has continued to explore this phenomenon, laying the ground for subsequent breakthroughs.

In 2001, Pierre Agostini succeeded in producing and investigating a series of consecutive light pulses, in which each pulse lasted just 250 attoseconds. At the same time, Ferenc Krausz was working with another type of experiment, one that made it possible to isolate a single light pulse that lasted 650 attoseconds.

The laureates’ contributions have enabled the investigation of processes that are so rapid they were previously impossible to follow.

“We can now open the door to the world of electrons. Attosecond physics gives us the opportunity to understand mechanisms that are governed by electrons. The next step will be utilising them,” says Eva Olsson, Chair of the Nobel Committee for Physics.

There are potential applications in many different areas. In electronics, for example, it is important to understand and control how electrons behave in a material. Attosecond pulses can also be used to identify different molecules, such as in medical diagnostics.

Other news from the department science

Most read news

More news from our other portals

Under the magnifying glass: The world of microscopy