Why fish don't freeze in the Arctic Ocean

Chemists unmask natural antifreeze

27-Aug-2010 - Germany

Together with cooperation partners from the U.S., the researchers surrounding Prof. Dr. Martina Havenith (physical chemistry II of the RUB) describe their discovery in a so-termed Rapid Communication in the Journal of the American Chemical Society (JACS). The journal's independent reviewers evaluated the work as one of the top 5% of all submissions.

Konrad Meister

This is the fish, Macropteris maculatus, with antifreeze protein structure.

Better than household antifreeze

Temperatures of minus 1.8 ° C should really be enough to freeze any fish: the freezing point of fish blood is about minus 0.9 ° C. How Antarctic fish are able to keep moving at these temperatures has interested researchers for a long time. As long as 50 years ago, special frost protection proteins were found in the blood of these fish. These so-called anti-freeze proteins work better than any household antifreeze. How they work, however, was still unclear. The Bochum researchers used a special technique, terahertz spectroscopy, to unravel the underlying mechanism. With the aid of terahertz radiation, the collective motion of water molecules and proteins can be recorded. Thus, the working group has already been able to show that water molecules, which usually perform a permanent dance in liquid water, and constantly enter new bonds, dance a more ordered dance in the presence of proteins – "the disco dance becomes a minuet" says Prof. Havenith.

Souvenir from an Antarctic expedition

The subject of the current investigations was the anti-freeze glycoproteins of the Antarctic toothfish Dissostichus mawsoni, which one of the American partners, Arthur L. Devries, had fished himself on an Antarctic expedition. "We could see that the protein has an especially long-range effect on the water molecules around it. We speak of an extended dynamical hydration shell", says co-author Konrad Meister. "This effect, which prevents ice crystallization, is even more pronounced at low temperatures than at room temperature", adds Prof. Havenith. Nevertheless, to freeze the water, lower temperatures would be necessary. Complexation of the AFP by borate strongly reduces the antifreeze activity. In this case, the researchers also found no change in the terahertz dance. The researchers' results provide evidence for a new model of how AFGPs prevent water from freezing: Antifreeze activity is not achieved by a single molecular binding between the protein and the water, but instead AFP perturbs the aqueous solvent over long distances. The investigation demonstrated for the first time a direct link between the function of a protein and its signature in the terahertz range. The studies were funded by the Volkswagen Foundation.

Original publication: Simon Ebbinghaus et al.; "Antifreeze glycoprotein activity correlates with long-range protein-water dynamics"; Journal of the American Chemical Society. August 16, 2010

Other news from the department science

These products might interest you

Kjel- / Dist Line

Kjel- / Dist Line by Büchi

Kjel- and Dist Line - steam distillation and Kjeldahl applications

Maximum accuracy and performance for your steam distillation and Kjeldahl applications

distillation systems
AZURA Purifier + LH 2.1

AZURA Purifier + LH 2.1 by KNAUER

Preparative Liquid Chromatography - New platform for more throughput

Save time and improve reproducibility during purification

LC systems
Loading...

More news from our other portals

See the theme worlds for related content

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

30+ products
5+ whitepaper
30+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

30+ products
5+ whitepaper
30+ brochures