Breakthrough in Photoemission Spectroscopy Allows Electronic Investigations Inside Crystals

23-Aug-2011 - Germany

The physical properties of solid substances are based on electronic states inside the materials. Now, an international team of researchers with the involvement of Jülich scientists has succeeded in studying these states in previously unimagined depths. The results have been published as an advance online publication by Nature Materials. In the "News and Views" commentary, the method is predicted to have a considerable potential for materials research.

For their measurements, the researchers from Germany, the USA, and Japan used the established method of angle-resolved photoemission spectroscopy. However, they used with a light source that was 100-times stronger than usual. This type of light is produced at a mere handful of scientific facilities throughout the world, in Germany, for instance, at the PETRA III storage ring in Hamburg. The team used SPring-8 in Japan, which is currently the world's most powerful synchrotron radiation facility in the hard X-ray range.

Photoemission spectroscopy has been used since the 1970s and is based on the photoelectric effect first theoretically described by Albert Einstein in 1905. Scientists use the method to irradiate samples with light, which causes electrons to become detached from the material. The distribution of angles and energy from the escaping electrons reveals information on the electronic states of the sample, for instance, the position and movement of electrons, band structures, or magnetic properties.

However, this had previously only been achieved for the first approximately five to ten atomic layers at the surfaces. From deeper layers, too few electrons reached the detectors of the measuring instruments. The scientists have now succeeded in achieving a view inside tungsten and arsenide over ten times deeper thanks to the especially brilliant light with high energies of up to six kiloelectron volts, an improved electron spectrometer, and cleverly selected sample material.

The participating scientists at SPring-8 adjusted the light source to allow a maximum number of photons to reach the sample on the smallest possible area. Experimental physicists from Jülich, Erlangen, Mainz, and Berkeley, optimized the spectrometer used and studied sample materials with low lattice vibrations in order to obtain the most detailed results possible. Theoretical physicists from Munich and Davis developed models that can be used to interpret the measurement results.

Original publication

Other news from the department science

These products might interest you

Microspectrometer

Microspectrometer by Hamamatsu Photonics

Ultra-compact microspectrometer for versatile applications

Precise Raman, UV/VIS and NIR measurements in portable devices

microspectrometers
ZEEnit

ZEEnit by Analytik Jena

Zeeman Technology for Maximum Sensitivity – Matching any Analytical Problem

Transverse-heated graphite furnace for optimum atomization conditions and high sample throughput

AAS spectrometers
SPECORD PLUS

SPECORD PLUS by Analytik Jena

SPECORD PLUS Series - Maximum precision in UV/Vis

The modern classic guarantees the highest quality

contrAA 800

contrAA 800 by Analytik Jena

contrAA 800 Series – Atomic Absorption. Redefined

The best of classical atomic absorption and ICP-OES spectrometry are combined in the contrAA 800

ICP-OES spectrometer
PlasmaQuant 9100

PlasmaQuant 9100 by Analytik Jena

PlasmaQuant 9100 Series of ICP-OES Instruments

Reveal the Details That Matter

ICP-OES spectrometer
INVENIO

INVENIO by Bruker

FT-IR spectrometer of the future: INVENIO

Freely upgradeable and configurable FT-IR spectrometer

FTIR spectrometers
PlasmaQuant MS Elite

PlasmaQuant MS Elite by Analytik Jena

LC-ICP-MS Is the Key to the World of Elemental Species

Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC

novAA®  800

novAA® 800 by Analytik Jena

The Analyzer 4 You - novAA 800-Series

The reliable all-rounder, making routine analysis efficient and cost-effective

Quantaurus-QY

Quantaurus-QY by Hamamatsu Photonics

High-speed UV/NIR photoluminescence spectrometer

Precise quantum yield measurements in milliseconds without reference standards

fluorescence spectrometers
fluidlab R-300 | Cell Counter & Spectrometer

fluidlab R-300 | Cell Counter & Spectrometer by anvajo

fluidlab R-300 | Cell Counter & Spectrometer

The first portable device that combines Cell Counting and Spectrometry

cell analyzers
FastTrack™

FastTrack™ by Mettler-Toledo

FastTrack UV/VIS Spectroscopy - Speed Up Your Measurements

Fast, reliable & efficient measurements with traceable accuracy in a small footprint

UV/VIS spectrophotometers
Loading...

More news from our other portals

See the theme worlds for related content

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

30+ products
5+ whitepaper
30+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

30+ products
5+ whitepaper
30+ brochures