Smartphone 'microscope' can detect a single virus

Your smartphone now can see what the naked eye cannot: A single virus and bits of material less than one-thousandth of the width of a human hair.

19-Sep-2013 - USA

Aydogan Ozcan, a professor of electrical engineering and bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science, and his team have created a portable smartphone attachment that can be used to perform sophisticated field testing to detect viruses and bacteria without the need for bulky and expensive microscopes and lab equipment. The device weighs less than half a pound.

"This cellphone-based imaging platform could be used for specific and sensitive detection of sub-wavelength objects, including bacteria and viruses and therefore could enable the practice of nanotechnology and biomedical testing in field settings and even in remote and resource-limited environments," Ozcan said. "These results also constitute the first time that single nanoparticles and viruses have been detected using a cellphone-based, field-portable imaging system."

The new research, published in the American Chemical Society's journal ACS Nano, comes on the heels of Ozcan's other recent inventions, including a cellphone camera–enabled sensor for allergens in food products and a smart phone attachment that can conduct common kidney tests.

Capturing clear images of objects as tiny as a single virus or a nanoparticle is difficult because the optical signal strength and contrast are very low for objects that are smaller than the wavelength of light.

In the ACS Nano paper, Ozcan details a fluorescent microscope device fabricated by a 3-D printer that contains a color filter, an external lens and a laser diode. The diode illuminates fluid or solid samples at a steep angle of roughly 75 degrees. This oblique illumination avoids detection of scattered light that would otherwise interfere with the intended fluorescent image.

Using this device, which attaches directly to the camera module on a smartphone, Ozcan's team was able to detect single human cytomegalovirus (HCMV) particles. HCMV is a common virus that can cause birth defects such as deafness and brain damage and can hasten the death of adults who have received organ implants, who are infected with the HIV virus or whose immune systems otherwise have been weakened. A single HCMV particle measures about 150–300 nanometers; a human hair is roughly 100,000 nanometers thick.

In a separate experiment, Ozcan's team also detected nanoparticles — specially marked fluorescent beads made of polystyrene — as small as 90-100 nanometers.

To verify these results, researchers in Ozcan's lab used other imaging devices, including a scanning electron microscope and a photon-counting confocal microscope. These experiments confirmed the findings made using the new cellphone-based imaging device.

Other news from the department science

These products might interest you

alpha300 R

alpha300 R by WITec

3D Raman microscopes with unequalled speed, sensitivity and resolution

Visualize and characterize every chemical detail

Raman microscopes
HYPERION II

HYPERION II by Bruker

FT-IR and IR laser imaging (QCL) microscope for research and development

Analyze macroscopic samples with microscopic resolution (5 µm) in seconds

FT-IR microscopes
Software & Data Management

Software & Data Management by Carl Zeiss

Bring Context to your Data with ZEISS Connected Microscopy

Your solution for microscopy, analysis and data management

microscopy software
Loading...

Most read news

More news from our other portals

Under the magnifying glass: The world of microscopy