A Biophysical ‘Smoking Gun’
Peter Allen
Discovering an unsuspected property of tau, UC Santa Barbara physical chemist Song-I Han and neurobiologist Kenneth S. Kosik have shed new light on the protein’s ability to morph from one state to another.
Remarkably, tau can, in a complex with RNA, condense into a highly compact “droplet” while retaining its liquid properties. In a phenomenon called phase separation, tau and RNA hold together, without the benefit of a membrane, but remain separate from the surrounding milieu. This novel state highly concentrates tau and creates a set of conditions in which it becomes vulnerable to aggregation.
“Our findings, along with related research in neurodegeneration, posit a biophysical ‘smoking gun’ on the path to tau pathology,” said Kosik, UCSB’s Harriman Professor of Neuroscience and co-director of the campus’s Neuroscience Research Institute. “The signposts on this path are the intrinsic ability of tau to fold into myriad shapes, to bind to RNA and to form compact reversible structures under physiologic conditions, such as the concentration, the temperature and the salinity.”
The researchers found that, depending on the length and shape of the RNA, up to eight tau molecules bind to the RNA to form an extended fluidic assembly. Several other proteins like tau are known to irreversibly aggregate in other neurodegenerative diseases such as amyotrophic lateral sclerosis, more commonly known as Lou Gehrig’s disease.
“There is an interesting relationship between intrinsically disordered proteins that are predisposed to become neurodegenerative — in this case tau — and this phase separation state,” said Han, a professor in UCSB’s Department of Chemistry and Biochemistry. “Is this droplet stage a reservoir that protects tau or an intermediate stage that helps transform tau into a disease state with fibrils or both at the same time? Figuring out the exact physiological role of these droplets is the next challenge.”
Subsequent analysis will consist of an intensive search for the counterpart of tau droplets in living cells. In future work, the researchers also want to explore how and why a cell regulates the formation and dissolution of these droplets and whether this represents a potential inroad toward therapy.
Original publication
Other news from the department science
These products might interest you
Kjel- / Dist Line by Büchi
Kjel- and Dist Line - steam distillation and Kjeldahl applications
Maximum accuracy and performance for your steam distillation and Kjeldahl applications
AZURA Purifier + LH 2.1 by KNAUER
Preparative Liquid Chromatography - New platform for more throughput
Save time and improve reproducibility during purification
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.