Rolling the dice on perovskite interfaces
Osaka University
Osaka University
Now, Osaka University-led researchers have found a way to model perovskite oxide interfaces with great precision and accuracy using a new computerized approach to picking out the correct structure from X-ray data.
"Using typical scanning transmission electron microscopy on perovskite oxides requires samples to be cut, which can damage the surface and affect the resolution," study lead author Masato Anada says. "Surface X-ray di?raction approaches avoid these effects but analyzing the data is complex, so few people are using this method. Our Monte Carlo-based refinement method provides a fast way to search for the most probable structure from X-ray data, and is versatile enough to be applied to more variable interfaces."
Monte Carlo methods help predict what the structure of an interface probably looks like. By making small changes, with certain restrictions, many different possible structures can be randomly simulated.
Applying this technique to the interface between perovskites and comparing simulated X-ray data with real measurements allows the researchers to rapidly identify the most likely perovskite structures.
They tested their new method on a simulated X-ray dataset from a realistic interface structure between two types of perovskite oxides, and the final structure refined by their modelling was very close to actual structure of the interface.
"Features of perovskite interfaces are ideal for testing out certain theories in condensed matter physics and for making new types of electronic materials system," coauthor Yusuke Wakabayashi says. "Our approach makes analyzing the complex structural data of these interfaces much easier, and it's also robust for uneven interfacial structures. This approach should be useful for anyone currently investigating these structures."