Mice with glowing hearts shed light on how hearts develop
Cornell researchers are breeding new lines of mice with similar proteins that target neurons in the brain, in parasympathetic nerves, in blood vessels or in Purkinje fibers, which prompt the heart's ventricles to pump. The researchers have also transplanted cells from the mice with glowing hearts into normal mice to see whether the transplanted cells function normally within the host heart, which could offer insights for heart repair.
In the study, the mouse was engineered to express a specially designed molecule that fluoresces when calcium, which increases dramatically with each muscle contraction, is released in heart cells. Co-author Junichi Nakai of the RIKEN Brain Science Institute in Wako-shi, Japan, developed the fluorescent molecule by modifying a green fluorescent protein (derived from bioluminescent jellyfish) and making it glow brightly enough to be observed in the working heart. Calcium turns the sensor molecule off and on like a molecular switch. Greater fluorescence indicates higher calcium levels, and the sensor shows the patterns, rate and force of heart contractions.
Since the mouse heart beats approximately 6 to 10 times per second, imaging requires a special high-speed camera that is cooled to minus 90 degrees Celsius (minus 128 Fahrenheit), reducing "noise" for a sharper image. Co-author Guy Salama of the University of Pittsburgh contributed the optical imaging work. Using this technique, the researchers were able to track the embryo's developing heart to glean insights into how the heart forms. In mammals, the heart is the first organ to function and starts beating prior to its full development.
"We knew that the heart starts to pump at around 9.5 days," said Kotlikoff. By day 10.5, there are only two chambers (rather than four chambers in an adult mammal): an atrium on top and a ventricle on the bottom. A delay in beats between the two gives the atrium time to contract and push blood through the heart, but the mechanism that controls that signal, the atrio-ventricular node (AV node), doesn't develop until day 13. Nobody knew how the heart coordinated the pumping without this key component. "We knew there had to be a delay in this, but we had no idea how it occurred," said Kotlikoff.
Using the new technique, which tracks the rise of calcium as the heart muscle contracts, the researchers discovered a layer of specialized cells on the surface of the developing heart that delays the beating between the upper to lower parts of the heart. After 13.5 days of development, the two portions of the heart separate into four, and there is a functional AV node. By that time, the technique revealed, the specialized cells have died so that functions are not duplicated.
Most read news
Other news from the department science
These products might interest you
Kjel- / Dist Line by Büchi
Kjel- and Dist Line - steam distillation and Kjeldahl applications
Maximum accuracy and performance for your steam distillation and Kjeldahl applications
AZURA Purifier + LH 2.1 by KNAUER
Preparative Liquid Chromatography - New platform for more throughput
Save time and improve reproducibility during purification
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.