Nanotechnologists gain powerful new materials probe

02-Mar-2009 - USA

Researchers at the National Institute of Standards and Technology (NIST) and The Johns Hopkins University have constructed a unique tool for exploring the properties of promising new materials with unprecedented sensitivity and speed — potentially allowing them to identify quickly those most useful for nanotechnology and industrial applications.

This novel instrument, called the Multi-Axis Crystal Spectrometer (MACS), is a variation on several other spectrometers at the NIST Center for Neutron Research (NCNR), where MACS is located. Like them, MACS bombards a sample of material with low-energy neutrons, which then bounce off the sample’s constituent atoms in specific directions and with specific velocities that reflect the arrangement of atoms within the material. Analyzing how neutrons scatter from a sample can tell scientists a great deal about the material’s physical properties, but older spectrometers are limited to relatively large samples and offer less range in the conditions under which they can be tested.

“These limitations are problematic in nanotechnology,” says Professor Collin Broholm of the Johns Hopkins University, “because oftentimes you grow a new material as a tiny crystal weighing only four or five milligrams, and then you want to see how it behaves under, say, an intense magnetic field.”

Not only can MACS overcome these limitations, but its unique construction allow has additional advantages. Many spectrometers provide just a single “channel” for detection, whereas MACS offers 20, forming a semicircle behind the sample — an arrangement that leads Broholm to compare MACS to a wide-angle, high-resolution lens. These improvements mean that MACS could become a favorite tool for scientists who must choose — and choose quickly — what material to grow next.

“With previous instruments for inelastic scattering from magnetic materials, 80 milligrams is about the smallest sample you can work with,” Broholm says. “But with MACS, we might be able to get detailed information about magnetic interactions even from a nano-structured thin film sample. These are the sort of interactions that nanotechnologists are trying to take advantage of when they design and shape things at the nanoscale.”

Other news from the department research and development

These products might interest you

contrAA 800

contrAA 800 by Analytik Jena

contrAA 800 Series – Atomic Absorption. Redefined

The best of classical atomic absorption and ICP-OES spectrometry are combined in the contrAA 800

ICP-OES spectrometer
ZEEnit

ZEEnit by Analytik Jena

Zeeman Technology for Maximum Sensitivity – Matching any Analytical Problem

Transverse-heated graphite furnace for optimum atomization conditions and high sample throughput

AAS spectrometers
Microspectrometer

Microspectrometer by Hamamatsu Photonics

Ultra-compact microspectrometer for versatile applications

Precise Raman, UV/VIS and NIR measurements in portable devices

microspectrometers
SPECORD PLUS

SPECORD PLUS by Analytik Jena

SPECORD PLUS Series - Maximum precision in UV/Vis

The modern classic guarantees the highest quality

PlasmaQuant 9100

PlasmaQuant 9100 by Analytik Jena

PlasmaQuant 9100 Series of ICP-OES Instruments

Reveal the Details That Matter

ICP-OES spectrometer
INVENIO

INVENIO by Bruker

FT-IR spectrometer of the future: INVENIO

Freely upgradeable and configurable FT-IR spectrometer

FTIR spectrometers
PlasmaQuant MS Elite

PlasmaQuant MS Elite by Analytik Jena

LC-ICP-MS Is the Key to the World of Elemental Species

Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC

novAA®  800

novAA® 800 by Analytik Jena

The Analyzer 4 You - novAA 800-Series

The reliable all-rounder, making routine analysis efficient and cost-effective

Quantaurus-QY

Quantaurus-QY by Hamamatsu Photonics

High-speed UV/NIR photoluminescence spectrometer

Precise quantum yield measurements in milliseconds without reference standards

fluorescence spectrometers
fluidlab R-300 | Cell Counter & Spectrometer

fluidlab R-300 | Cell Counter & Spectrometer by anvajo

fluidlab R-300 | Cell Counter & Spectrometer

The first portable device that combines Cell Counting and Spectrometry

cell analyzers
FastTrack™

FastTrack™ by Mettler-Toledo

FastTrack UV/VIS Spectroscopy - Speed Up Your Measurements

Fast, reliable & efficient measurements with traceable accuracy in a small footprint

UV/VIS spectrophotometers
Loading...

More news from our other portals