In Folie gebettet mit hohen Pulsenergien
KIT
Unter Optofluidik versteht man flüssigkeitsbasierte optische und photonische Elemente oder Bauteile. Optofluidische Laser sind miniaturisierte Flüssigkeits-Farbstofflaser, die sichtbares Licht emittieren. Sie können als Lichtquelle für die integrierte Optik oder für integrierte photonische Sensorsysteme dienen. Durch die Zusammenarbeit der KIT-Nachwuchsgruppe von Dr.-Ing. Timo Mappes mit der Forschergruppe von Prof. Anders Kristensen der Technical University of Denmark konnte der KIT-Doktorand Christoph Vannahme nun erstmalig einen Laser realisieren, der in einer nur 1/3 Millimeter dicken Folie eingebettet ist und eine deutlich erhöhte Ausgangsleistung gegenüber herkömmlichen Lasern aufweist.
In einem leicht auf industrielle Fabrikation übertragbaren Prozess wird zur Herstellung der Laser zunächst eine Folie mit einer Kombination aus Nano- und Mikrostrukturen versehen. Diese geschieht durch Prägen mit einem Stempel bei erhöhter Temperatur. „Durch das Deckeln dieser Struktur mit einer weiteren Folie entsteht so ein Mikrokanal mit nur 1,6 Mikrometer Höhe, das entspricht dem 40sten Teil eines Haardurchmessers“, erläutert Christoph Vannahme, Doktorand am Institut für Mikrostrukturtechnik und am Lichttechnischen Institut des KIT. „Die Breite des Mikrokanals misst 0,5 Millimeter und der Kanalboden ist mit einer Nanostruktur versehen. Leitet man eine Farbstoffflüssigkeit durch diesen Kanal und regt den Farbstoff zum Leuchten an, so entsteht aufgrund der Strukturierung Laserlicht“, beschreibt Vannahme den Prozess.
Die Periode der Nanostruktur bestimmt die Farbe - die Wellenlänge - des Laserlichts. Mit zwei verschiedenen Perioden können mit derselben Flüssigkeit unterschiedliche Laserwellenlängen erzeugt werden. Das Kanaldesign ermöglicht hohe Pulsenergien von mehr als 1 Mikrojoule und schmale Bandbreiten des Laserlichts. Da die Flüssigkeit durch den Mikrokanal gepumpt wird, werden die Farbstoffmoleküle ständig ausgetauscht und dadurch sehr lange Betriebsdauern erreicht.
Im Rahmen eines durch das Karlsruhe House of Young Scientists (KHYS) geförderten Auslandsaufenthaltes arbeitete Christoph Vannahme für sechs Monate an der Technical University of Denmark und entwickelte dort den neuen Laser. Der Laser kann in mikrooptische Analysesysteme integriert werden, die Vannahme im Rahmen seiner Doktorarbeit entwickelt.
Originalveröffentlichung: Christoph Vannahme, Mads Brøkner Christiansen, Timo Mappes, Anders Kristensen; „Optofluidic dye laser in a foil“; Optics Express 2010, 18 (9): 9280-9285
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
qTOWER iris von Analytik Jena
Real-time-PCR-Thermocycler qTOWER iris
Feel Free to Explore!
CyBio FeliX von Analytik Jena
Der kompakte Pipettierroboter für jeden Labortisch
Flexible Pipettierplattform für vollautomatisches ein- bis mehrkanaliges Liquid Handling
MultiScan MS 20 von DataPhysics
Stabilitätsanalyse von Dispersionen leicht gemacht
Das Analysegerät MultiScan MS 20 hilft bei der Produktoptimierung von Emulsionen und Suspensionen
Crystal16 von Technobis
Crystal16 - das ultimativen Instrument für Forschung und Prozessentwicklung
Kristallisationsstudien optimieren mit dem Labortisch-Kristallisationssystem der nächsten Generation
qTOWER³ auto von Analytik Jena
Real-Time PCR - vollautomatisiert für höchste Effizienz
Kompakter, zuverlässiger und kosteneffektiver qPCR-Thermocycler für den Hochdurchsatz
Gassorptionsanalysator Belsorp Mini X von Microtrac Retsch
Messung von spezifischer Oberfläche (BET), Porengröße und Gesamtporenvolumen in einem Gerät
Sorptions-Messungen von bis zu 4 Proben gleichzeitig mit höchster Präzision und Reproduzierbarkeit
OsmoTECH® HT Automated Micro-Osmometer von Advanced Instruments
Das Einzige Mikroosmometer auf 96well-Basis, das Für Bioprocessing Erhältlich Ist
Optimieren Sie Ihre Prozesse, indem Sie Ihre Osmolalitätsmessungen automatisieren
VariFamily von Schmidt + Haensch
Gerätekommunikation auf höchstem Niveau – Upgrade für Ihr Labor
Messgeräte nach bewährter SCHMIDT + HAENSCH Qualität
Octet RH16 and RH96 von Sartorius
Effiziente Proteinanalyse im Hochdurchsatz zur Prozessoptimierung und Herstellungskontrolle
Markierungsfreie Protein-Quantifizierung und Charakterisierung von Protein-Protein Wechselwirkungen
Octet SF3 von Sartorius
Molekulare Bindungskinetik und Affinität mit einer einzigen dynamischen SPR-Injektion
Die Kurvenkrümmung ist der Schlüssel akkurater biomolekularer Wechselwirkungsanalyse
Kjel- / Dist Line von Büchi
Kjel- und Dist Line - Wasserdampfdestillation und Kjeldahl-Anwendungen
Maximale Genauigkeit und Leistung für Wasserdampfdestillation und Kjeldahl-Anwendungen
Octet R2 / Octet R4 / Octet R8 von Sartorius
Vollgas auf 2, 4 oder 8 Kanälen: Molekulare Wechselwirkungen markierungsfrei in Echtzeit analysieren
Innovative markierungsfreie Echtzeit-Quantifizierung, Bindungskinetik und schnelle Screening-Assays
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.