Tailored electron pulses for improved electron microscopy
Interplay of free electrons
Our understanding of nanoscale phenomena largely rests on the performance of modern microscopy. For example, transmission electron microscopes routinely achieve atomic resolution nowadays. In these microscopes, electrons are sent through an object under investigation to obtain an image – in some analogy to a light microscope. Thereby, electron microscopes can visualize molecular structures, the atomic ordering in solids, and the shape of nanoparticles.
However, the contrast and resolution of electron microscopes is limited, among other things, by interactions between electrons: when two electrons come close to each other, they mutually repel due to the Coulomb force. This limits the maximum usable brightness of an electron beam. Researchers led by Claus Ropers, director at the Max Planck Institute (MPI) for Multidisciplinary Sciences, have now resolved and analyzed the repulsion between individual electrons in the microscope for the first time. Using the new insights, they developed methods that make use of this interparticle repulsion.
Counted electrons
“Electrons in a beam are randomly distributed. Therefore, one cannot control the inaccuracies introduced by Coulomb forces,” says Rudolf Haindl, first author of the study recently published in the scientific magazine Nature Physics. But when the physicists use a laser to generate electrons in the form of ultrashort pulses, they also create packets with exactly two, three, or four electrons. These electrons are closely confined in space and time such that they interact with each other. With the help of a spectrometer and an event-based detector, the energy exchange between electrons in a pulse becomes visible. “Depending on how many electrons are in a pulse, the electrons repel each other to different degrees – this allowed us to determine an energetic fingerprint for the number of electrons in a pulse,” Haindl points out.
New possibilities
Based on their findings, the team developed new schemes to use the multi-electron states in electron microscopes. “We have worked out a procedure that will enable us to generate electron pulses with a fixed number of electrons in the future. This can significantly increase the performance of electron microscopes in basic research and technology applications, for example in semiconductor manufacturing,” explains Armin Feist, co-author and physicist in Ropers’ team.
Max Planck Director Ropers adds, “In addition to the implications for electron microscopy and lithography, we believe that the electrons are also quantum mechanically ‘entangled’, tied to each other in a specific quantum way, which opens up a new interface between electron microscopy and quantum technology.”
Original publication
Most read news
Original publication
Rudolf Haindl, Armin Feist, Till Domröse, Marcel Möller, John H. Gaida, Sergey V. Yalunin, Claus Ropers; "Coulomb-correlated electron number states in a transmission electron microscope beam"; Nature Physics, Volume 19, 2023-6-22
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.