Laser printing on fallen tree leaves produces sensors for medical and laboratory use
Major advancement for the fabrication of next-generation electrochemical sensors
Bruno Janegitz
“We used a CO2 [carbon dioxide] laser to print the design of interest on a leaf by means of pyrolysis and carbonization. We thereby obtained an electrochemical sensor for use in determining levels of dopamine and paracetamol. It’s very easy to operate. A drop of the solution containing one of these compounds is placed on the sensor, and the potentiostat to which it’s coupled displays the concentration,” Janegitz said.
Simply put, the laser beam burns the leaf in a pyrolytic process that converts its cellulose into graphite, and the graphite body is printed on the leaf in a shape suited to functioning as a sensor. During the fabrication process, the parameters of the CO2 laser, including laser power, pyrolysis scan rate and scan gap, are systematically adjusted to achieve optimal outcomes.
“The sensors were characterized by morphological and physicochemical methods, permitting exhaustive exploration of the novel carbonized surface generated on the leaves,” Janegitz said.
“Furthermore, the applicability of the sensors was confirmed by tests involving the detection of dopamine and paracetamol in biological and pharmaceutical samples. For dopamine, the system proved efficient in a linear range of 10–1,200 micromoles per liter, with a detection limit of 1.1 micromole per liter. For paracetamol, the system worked well in a linear range of 5-100 micromoles per liter, with a detection limit of 0.76.”
In the tests involving dopamine and paracetamol, conducted as proof of concept, the electrochemical sensors derived from fallen tree leaves attained a satisfactory analytical performance and noteworthy reproducibility, highlighting their potential as an alternative to conventional substrates.
Substituting fallen tree leaves for conventional materials yields significant gains in terms of cost-cutting and above all environmental sustainability. “The leaves would have been incinerated, or at best composted. Instead, they were used as a substrate for high value-added devices in a major advancement for the fabrication of next-generation electrochemical sensors,” Janegitz said.
Original publication
Rodrigo Vieira Blasques, Jéssica Rocha Camargo, William Barros Veloso, Gabriel Negrão Meloni, Fernando Amaral Fernandes, Beatriz Fernandes Germinare, Luiz Ricardo Guterres e Silva, Abner de Siervo, Thiago Regis Longo Cesar Paixão, Bruno Campos Janegitz; "Green Fabrication and Analytical Application of Disposable Carbon Electrodes Made from Fallen Tree Leaves Using a CO2 Laser"; ACS Sustainable Chemistry & Engineering, Volume 12, 2024-2-13
Most read news
Original publication
Rodrigo Vieira Blasques, Jéssica Rocha Camargo, William Barros Veloso, Gabriel Negrão Meloni, Fernando Amaral Fernandes, Beatriz Fernandes Germinare, Luiz Ricardo Guterres e Silva, Abner de Siervo, Thiago Regis Longo Cesar Paixão, Bruno Campos Janegitz; "Green Fabrication and Analytical Application of Disposable Carbon Electrodes Made from Fallen Tree Leaves Using a CO2 Laser"; ACS Sustainable Chemistry & Engineering, Volume 12, 2024-2-13
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.