Imaging with attosecond short X-ray flashes
Breakthrough opens the door to visualising ultrafast processes, such as chemical reactions, with unprecedented temporal precision
Attosecond science, honored with the 2023 Nobel Prize in Physics, is transforming our understanding of how electrons move in atoms, molecules, and solids. An attosecond—equivalent to a billionth of a billionth of a second—enables "slow-motion" visualization of natural processes occurring at extraordinary speeds. However, until now, most attosecond experiments have been limited to spectroscopic measurements due to the constraints of attosecond light pulse sources.
Using the powerful X-ray Free Electron Laser (FEL) at SLAC National Laboratory in California, the Hamburg team studied how ultrashort pulses interact with nanoparticles. They uncovered a previously unexplored phenomenon: transient ion resonances that enhance image brightness. These fleeting resonances, which occur when FEL pulses are shorter than those used in most experiments, significantly amplify X-ray scattering efficiency. This discovery not only improves the quality and detail of diffraction images but also marks a crucial step toward atomic-scale imaging.
“We were initially puzzled by the unexpectedly strong X-ray diffraction signals during our experiments at the Linac Coherent Light Source (LCLS),” says Tais Gorkhover, one of the study’s lead authors from the University of Hamburg and a researcher in the Cluster of Excellence CUI: Advanced Imaging of Matter. “After rigorous quality checks and independent verification from simulations, we confirmed the effect.” Typically, when intense X-ray pulses strike matter, electrons—the primary contributors to X-ray diffraction—are stripped away through ionization, leaving ions that scatter X-rays less effectively. The current study, however, reveals that under extremely short and specifically tuned FEL pulses, these ions can increase their diffraction efficiency by orders of magnitude.
“This discovery offers a novel approach to enhancing both the brightness and resolution of X-ray diffraction imaging,” explains Stephan Kuschel, the study’s first author. “This technique opens the door to visualizing ultrafast processes, such as chemical reactions and catalytic transformations, in their natural environments with remarkable temporal resolution.”
The findings emphasize the importance of pushing technological boundaries in X-ray imaging to unveil the invisible dynamics of matter. With further advancements, this breakthrough promises impacts in fields such as chemistry, materials science, and nanotechnology. “This is a step closer to the ultimate goal of capturing individual atoms in motion,” the researchers note. “By fine-tuning X-ray pulse conditions, we will be able to observe details that were previously beyond reach.”
Original publication
Stephan Kuschel, Phay J. Ho, Andre Al Haddad, Felix F. Zimmermann, Leonie Flueckiger, Matthew R. Ware, Joseph Duris, James P. MacArthur, Alberto Lutman, Ming-Fu Lin, Xiang Li, Kazutaka Nakahara, Jeff W. Aldrich, Peter Walter, Linda Young, Christoph Bostedt, Agostino Marinelli, Tais Gorkhover; "Non-linear enhancement of ultrafast X-ray diffraction through transient resonances"; Nature Communications, Volume 16, 2025-1-20
Most read news
Original publication
Stephan Kuschel, Phay J. Ho, Andre Al Haddad, Felix F. Zimmermann, Leonie Flueckiger, Matthew R. Ware, Joseph Duris, James P. MacArthur, Alberto Lutman, Ming-Fu Lin, Xiang Li, Kazutaka Nakahara, Jeff W. Aldrich, Peter Walter, Linda Young, Christoph Bostedt, Agostino Marinelli, Tais Gorkhover; "Non-linear enhancement of ultrafast X-ray diffraction through transient resonances"; Nature Communications, Volume 16, 2025-1-20
Topics
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.