Mapping the spread of diarrhoea bacteria a major step towards new vaccine
Researchers at the University of Gothenburg's Sahlgrenska Academy have made a major breakthrough in collaboration with colleagues from the Wellcome Trust Sanger Institute in the UK, Karolinska Institutet in Sweden and universities in Japan, Germany and the USA, among others.
A study published in Nature Genetics details how the Gothenburg researchers used comprehensive DNA analyses to reveal the ETEC bacteria's genetic composition – an analysis that also makes it possible to map how the bacteria spread.
"We can see that some of the dangerous strains of ETEC derive from a single bacterium that has divided and spread right around the world," says Astrid von Mentzer, doctoral student at the Sahlgrenska Academy. "This may sound like bad news, but it actually means that the vaccine that we are developing on the basis of the most common types of bacteria will be of global benefit."
The researchers were also able to demonstrate in the study that some of the ETEC groups identified came into existence as far back as 174 years ago. Astrid von Mentzer feels that this new information about the genetic composition of ETEC bacteria and how they spread means that we are a step closer to reducing the prevalence of diarrhoeal diseases worldwide.
Original publication
"Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution."; Nature Genetics 2014
Most read news
Other news from the department science
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.