Varian, Inc. Announces Unique Probe Technology Breakthrough for Biological Solids NMR
The breakthrough scroll coil technology of the Bio-MAS probe facilitates scientists' research efforts to determine and better understand protein structures by solid state NMR, such as those associated with Alzheimer's disease and Type 2 diabetes. For bio-solids NMR studies, many samples are analyzed in the presence of salts; however the presence of these salts leads to undesirable heating that can denature the sample proteins, compromising experiment results and efficacy. Unlike the solenoid coils used in all current solid state NMR probes, Varian's new Bio-MAS probe's unique scroll coil design is more tolerant of high sample salt concentrations and causes less sample heating, which prolongs the sample's integrity. The new coil design also provides excellent RF homogeneity, which contributes to outstanding sensitivity for complex bio-solids experiments.
Bio-solids NMR experiments allow access to the 70% of all cellular proteins, such as membrane proteins, that are considered solids because they are not free floating in intracellular fluid. These studies can provide researchers with unparalleled insight into proteins and biomarker molecules associated with a wide variety of diseases.
Most read news
Topics
Organizations
Other news from the department research and development
These products might interest you
Kjel- / Dist Line by Büchi
Kjel- and Dist Line - steam distillation and Kjeldahl applications
Maximum accuracy and performance for your steam distillation and Kjeldahl applications
AZURA Purifier + LH 2.1 by KNAUER
Preparative Liquid Chromatography - New platform for more throughput
Save time and improve reproducibility during purification
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.