Zukünftiger Baustein für die Photovoltaik
Forschungsteam beobachtet erstmals Entstehung von „dunklen“ Moiré-Interlagen-Exzitonen
Brad Baxley, Part to Whole, LLC
Atomar dünne Strukturen aus zweidimensionalen Halbleitermaterialien sind vielversprechende Kandidaten für zukünftige Bauteile in der Elektronik, Optoelektronik und Photovoltaik. Die Eigenschaften dieser Halbleiter können auf faszinierende Weise kontrolliert werden: Wie Legosteine können die atomar dünnen Schichten aufeinandergestapelt werden. Es gibt allerdings einen weiteren wichtigen Trick: Während Legosteine nur gerade oder um 90 Grad gegeneinander verdreht gestapelt werden können, kann der Drehwinkel im Aufbau der Halbleiterstrukturen beliebig eingestellt werden, und genau dieser Drehwinkel ist für die Herstellung neuartiger Solarzellen interessant. Während der Drehwinkel also ein bahnbrechender Kontrollparameter für neue Technologien sein kann, führt er auch zu experimentellen Herausforderungen: Typische experimentelle Ansätze haben nur indirekte Zugänge zu den Moiré-Interlagen-Exzitonen, sind quasi ‚blind‘ gegenüber den ‚dunklen‘ Exzitonen. „Mit Hilfe der zeitaufgelösten Impulsmikroskopie machen wir diese eigentlich dunklen Exzitonen sichtbar“, erklärt Dr. Marcel Reutzel, Nachwuchsgruppenleiter in der Fakultät für Physik an der Universität Göttingen. „So können wir messen, wie die Exzitonen auf der Zeitskala von dem Millionstel eines Millionstels einer Millisekunde ausgebildet werden. Wir können die Dynamik der Entstehung dieser Exzitonen in einer quanten-mechanischen Theorie beschreiben, die die Forschergruppe von Prof. Dr. Ermin Malic aus Marburg entwickelt hat.“
„Diese Ergebnisse ermöglichen uns nicht nur einen fundamentalen Einblick in die Entstehung dunkler Moiré-Interlagen-Exzitonen, sondern eröffnen zudem eine völlig neue Perspektive, die optoelektronischen Eigenschaften dieser neuen und faszinierenden Materialien zu studieren“, so Prof. Dr. Stefan Mathias, Leiter der Studie am I. Physikalischen Institut der Universität Göttingen. „In unserem Experiment messen wir eine bahnbrechende Signatur des Moiré-Potenzials, das heißt, den Einfluss der kombinierten Eigenschaften der beiden verdrehten Halbleiterschichten. In Zukunft werden wir genau diesen Effekt weiter studieren, um mehr über die resultieren Materialeigenschaften zu lernen.“
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.