Embryonen beim Wachsen zusehen
Daten und Bilder von Christian Mattheyer, Daniel von Wangenheim und Francesco Pampaloni
Die Lichtscheiben- beziehungsweise Lichtblatt-Fluoreszenzmikroskopie (LSFM) ist eine extreme Weiterentwicklung der konfokalen Fluoreszenzmikroskopie. In beiden Verfahren werden fluoreszierende Moleküle, die zum Teil von den Objekten selbst erzeugt werden, zum Leuchten angeregt. Das Problem aller Lichtmikroskope ist, dass Beleuchtung bereits einen Einfluss auf den Stoffwechsel hat. In vielen Zellen werden nämlich die an biochemischen Prozessen beteiligten Moleküle durch Licht geschädigt. Dies wird unter dem Begriff Fototoxizität zusammengefasst. Um die räumliche und zeitliche Verteilung von bestimmten Proteinen (Eiweißen) zu erkennen, verwendet man bei der Fluoreszenzmikroskopie außerdem leuchtfähige Farbstoffe. Leider sind sie nicht lichtecht. Sie verbrauchen sich beziehungsweise bleichen aus, wenn sie angeregt werden.
Beide Probleme treten vor allem dann auf, wenn man dreidimensionale Bilder mit der herkömmlichen konfokalen Lichtmikroskopie aufnehmen will. „Dazu muss man den Fokus des Mikroskops von der Oberfläche bis in die tiefste Schicht des Objekts Ebene für Ebene führen. Dabei werden zwangsläufig jedes Mal alle Schichten beleuchtet, auch wenn sie gar nicht beobachtet werden“, erklärt Stelzer, der seit 2002 an der Entwicklung der LSFM arbeitet. Er ist Professor am Exzellenzcluster Makromolekulare Komplexe der Goethe-Universität.
Ernst Stelzer hatte die Idee, nur jeweils eine Ebene des Objekts, das Objekt also scheibenweise, von der Seite zu beleuchten. Die Kamera, mit der das von den Fluoreszenzfarbstoffen ausgesandte Licht aufgenommen wird, ist senkrecht zu dieser Ebene angeordnet. Der Vorteil: Es wird nur noch diese eine Schicht, die auch beobachtet wird, beleuchtet. Da die ober- und unterhalb liegenden Nachbarschichten nicht beleuchtet werden, werden hier weder die für die Vitalität des Tieres oder der Pflanze wichtigen organischen Moleküle noch die Fluoreszenzfarbstoffe belastet. „Bei einem Zebrafisch-Embryo lässt sich beispielsweise die benötigte Strahlung um zwei bis vier Größenordnungen verringern“, rechnet Stelzer vor. So lässt sich das Wachstum vieler Modell-Embryonen über 50 bis 150 Stunden verfolgen. Da man auch keine Signale von Schichten, die außerhalb des Fokus liegen, erhält, verbessert sich die Qualität der Bilder so erheblich, dass sich dreidimensionale Bildstapel aufzeichnen lassen. LSFM werden also verwendet, um dreidimensionale Prozesse als Funktion der Zeit, also 3D-Filme, zu erzeugen.
Anwendung findet LSFM bereits in den Neurowissenschaften, der Zellbiologie, der Pflanzenbiologie und der Entwicklungsbiologie. Die Methode erlaubt es erstmals auch, vergleichsweise große, aus vielen Zellen bestehende Organismen unter natürlichen (physiologischen) Bedingungen zu beobachten. Sie werden nicht nur unter Bedingungen gehalten, die denen ihres ursprünglichen Lebensraums entsprechen, sie überleben die Beobachtung auch ohne erkennbare Schäden und haben trotz der Beobachtung in einem Mikroskop Nachkommen, die selbst fruchtbar sind. „Das Lichtscheiben-Mikroskop hat bereits begonnen, die Zell-, Pflanzen- und Entwicklungsbiologie zu revolutionieren und wird mit der Zeit weitere Wissenschafts- und Anwendungsfelder beeinflussen“, urteilt Stelzer. Inzwischen werden mehr als 100 dieser Mikroskope in weltweit über 100 Forschergruppen verwendet.
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.